Câu 1 - Trang 39: (Toán 6 tập 1 sách Cánh Diều)
Cho các số 104, 627, 3 114, 5 123,6 831 và 72 102. Trong các số đó:
a) Số nào chia hết cho 3? Vì sao?
b) Số nào không chia hết cho 3? Vì sao?
c) Số nào chia hết cho 9? Vì sao?
d) Số nào chia hết cho 3, nhưng không chia hết cho 9? Vì sao?
Giải:
Ta áp dụng dấu hiệu chia hết cho 3 và dấu hiệu chia hết cho 9 để thực hiện bài tập này.
a) Trong các số đã cho ta có:
+ Số 627 chia hết cho 3 vì tổng các chữ số 6 + 2 + 7 = 15 chia hết cho 3.
+ Số 3 114 chia hết cho 3 vì tổng các chữ số 3 + 1 + 1 + 4 = 9 chia hết cho 3.
+ Số 6 831 chia hết cho 3 vì tổng các chữ số 6 + 8 + 3 + 1 = 18 chia hết cho 3.
+ Số 72 102 chia hết cho 3 vì tổng các chữ số 7 + 2 + 1 + 0 + 2 = 12 chia hết cho 3.
b) Ta có:
+ Số 104 không chia hết cho 3 vì tổng các chữ số 1 + 0 + 4 = 5 không chia hết cho 3.
+ Số 5 123 không chia hết cho 3 vì tổng các chữ số 5 + 1 + 2 + 3 = 11 không chia hết cho 3.
c) Ta có:
+ Số 3 114 chia hết cho 9 vì tổng các chữ số 3 + 1 + 1 + 4 = 9 chia hết cho 9.
+ Số 6 831 chia hết cho 9 vì tổng các chữ số 6 + 8 + 3 + 1 = 18 chia hết cho 9.
d) Ta có:
+ Số 627 chia hết cho 3 và không chia hết cho 9 vì tổng các chữ số 6 + 2 + 7 = 15 chia hết cho 3 nhưng không chia hết cho 9.
+ Số 72 102 chia hết cho 3 và không chia hết cho 9 vì tổng các chữ số 7 + 2 + 1 + 0 + 2 = 12 chia hết cho 3 nhưng không chia hết cho 9.
Câu 2 - Trang 39: (Toán 6 tập 1 sách Cánh Diều)
Trong các số 2, 3, 5, 9 số nào là ước của n với
a) n = 4 536;
b) n = 3 240;
c) n = 9 805?
Giải:
a) n = 4 536
+ Vì số 4 536 có chữ số tận cùng là 6 nên số này chia hết cho 2 và không chia hết cho 5.
+ Số 4 536 có tổng các chữ số là 4 + 5 + 3 + 6 = 18 vừa chia hết cho 3 vừa chia hết cho 9 nên 4 536 là số chia hết cho cả 3 và 9.
Do đó trong các số 2; 3; 5; 9, các ước số của số n = 4 536 là 2; 3; 9.
b) n = 3 240
+ Số 3 240 có chữ số tận cùng là 0 nên số này chia hết cho cả 2 và 5.
+ Số 3 240 có tổng các chữ số là 3 + 2 + 4 + 0 = 9 vừa chia hết cho 3 vừa chia hết cho 9 nên 3 240 là số chia hết cho cả 3 và 9.
Do đó trong các số 2; 3; 5; 9, các ước số của số n = 3 240 là 2; 3; 5; 9.
c) n = 9 805
+ Số 9 805 có chữ số tận cùng là 5 nên số này chia hết cho 5 và không chia hết cho 2.
+ Số 9 805 có tổng các chữ số là 9 + 8 + 0 + 5 = 22 không chia hết cho cả 3 và 9 nên số 9 805 không chia hết cho cả 3 và 9.
Do đó trong các số 2; 3; 5; 9, các ước số của số n = 9 805 là 5.
Câu 3 - Trang 39: (Toán 6 tập 1 sách Cánh Diều)
Tìm chữ số thích hợp ở dấu * để số:
a)
chia hết cho 3;
b)
chia hết cho 9
Giải:
a) Vì * là một chữ số trong số
nên * phải là một trong các số: 0; 1; 2; …; 9.
Số
chia hết cho 3 chia hết cho 3 nên tổng các chữ số của số
hia hết cho 3 là (3 + * + 7) = (10 + *) phải là số chia hết cho 3.
Thử thay * lần lượt bằng các số 0; 1; 2; …; 9, ta thấy các số thỏa mãn là 2; 5; 8.
Vậy các chữ số thích hợp điền vào dấu * để số
chia hết cho 3 chia hết cho 3 là: 2; 5; 8.
b) Vì * là một chữ số trong số
chia hết cho 3 nên * phải là một trong các số: 0; 1; 2; …; 9.
Số
chia hết cho 3 chia hết cho 9 nên tổng các chữ số của số Tìm chữ số thích hợp ở dấu * để số: a) 3*7 chia hết cho 3 là (2 + 7 + *) = (9 + *) phải là số chia hết cho 9.
Thử thay * lần lượt bằng các số 0; 1; 2; …; 9, ta thấy các số thỏa mãn là 0; 9.
Vậy các chữ số thích hợp điền vào dấu * để số
chia hết cho 3 chia hết cho 9 là: 0; 9.
Câu 4 - Trang 39: (Toán 6 tập 1 sách Cánh Diều)
Tìm chữ số thích hợp ở dấu * để số:
a)
chia hết cho 5 và 9;
b)
chia hết cho 2 và 3.
Giải:
a) Vì * là một chữ số trong số
chia hết cho 5 và 9 nên * phải là một trong các số: 0; 1; 2; …; 9.
Số
chia hết cho 5 và 9 chia hết cho 5 nên
chia hết cho 5 và 9 phải có chữ số tận cùng là 0 hoặc 5, hay * phải là 0 hoặc 5.
Số
chia hết cho 5 và 9 chia hết cho 9 nên tổng các chữ số của số
chia hết cho 5 và 9 là (1 + 3 + *) = (4 + *) phải là số chia hết cho 9.
Thay * lần lượt bằng các số 0; 5 ta được:
4 + 0 = 5 không chia hết cho 9
4 + 5 = 9 chia hết cho 9
Vậy chữ số thích hợp điền vào dấu * để số
chia hết cho 5 và 9 chia hết cho cả 5 và 9 là: 5 hay * = 5.
b) Số
chia hết cho 2 nên
phải có chữ số tận cùng là 0; 2; 4; 6; 8, hay * phải là một trong các số: 0; 2; 4; 6; 8.
Số
chia hết cho 3 nên tổng các chữ số của số
là (6 + 7 + *) = (13 + *) phải là số chia hết cho 3.
Thay * lần lượt bằng các số 0; 2; 4; 6; 8 ta được:
13 + 0 = 13 không chia hết cho 3
13 + 2 = 15 chia hết cho 3
13 + 4 = 17 không chia hết cho 3
13 + 6 = 19 không chia hết cho 3
13 + 8 = 21 chia hết cho 3
Vậy các chữ số thích hợp điền vào dấu * để số
chia hết cho cả 2 và 3 là: 2; 8 hay * = 2 hoặc * = 8.
Câu 5 - Trang 39: (Toán 6 tập 1 sách Cánh Diều)
Các lớp 6A, 6B, 6C, 6D, 6E có số học sinh tương ứng là 40, 45, 39, 44, 42. Hỏi:
a) Lớp nào có thể xếp thành 3 hàng với số học sinh ở mỗi hàng là như nhau?
b) Lớp nào có thể xếp thành 9 hàng với số học sinh ở mỗi hàng là như nhau?
c) Có thể xếp tất cả học sinh của năm lớp đó thành 3 hàng với số học sinh ở mỗi hàng là như nhau được không?
d) Có thể xếp tất cả học sinh của năm lớp đó thành 9 hàng với số học sinh ở mỗi hàng là như nhau được không?
Giải:
a) Để số học sinh của một lớp có thể xếp thành ba hàng với số học sinh ở mỗi hàng là như nhau thì tổng số học sinh của lớp đó phải là số chia hết cho 3.
Trong các số 40; 45; 39; 44; 42 thì:
+ Số 45 chia hết cho 3 (vì 45 có tổng các chữ số là 4 + 5 = 9 chia hết cho 3)
+ Số 39 chia hết cho 3 (vì 39 có tổng các chữ số là 3 + 9 = 12 chia hết cho 3)
+ Số 42 chia hết cho 3 (vì 42 có tổng các chữ số là 4 + 2 = 6 chia hết cho 3)
Vậy các lớp 6B, 6C; 6E có thể xếp thành 3 hàng với số học sinh ở mỗi hàng là như nhau.
b) Để số học sinh của một lớp có thể xếp thành chín hàng với số học sinh ở mỗi hàng là như nhau thì tổng số học sinh của lớp đó phải là số chia hết cho 9.
Trong các số 40; 45; 39; 44; 42 thì chỉ có số 45 chia hết cho 9 (vì 45 có tổng các chữ số là 4 + 5 = 9 chia hết cho 9).
Vậy chỉ có lớp 6B có thể xếp thành 9 hàng với số học sinh ở mỗi hàng là như nhau.
c) Tổng số học sinh của cả 5 lớp 6A, 6B, 6C, 6D, 6E là:
40 + 45 + 39 + 44 + 42 = 210 (học sinh)
Ta có số 210 là số chia hết cho 3 (vì tổng các chữ số của số 210 là 2 + 1 + 0 = 3 chia hết cho 3)
Do đó tổng số học sinh của cả 5 lớp là số chia hết cho 3.
Vậy ta có thể xếp tất cả học sinh của 5 lớp đó thành 3 hàng với số học sinh ở mỗi hàng là như nhau.
d) Ta có số 210 là số không chia hết cho 9 (vì tổng các chữ số của số 210 là 2 + 1 + 0 = 3 không chia hết cho 9)
Do đó tổng số học sinh của cả 5 lớp là số không chia hết cho 9.
Vậy ta không thể xếp tất cả học sinh của 5 lớp đó thành 9 hàng với số học sinh ở mỗi hàng là như nhau.